Green Infrastructure in the Greater Lansing Area

Friday May 9, 2014

David Christian, PE
DC Engineering
Lansing, MI

Dan Christian, PE
Tetra Tech
Lansing, MI
Michigan Avenue
Planter Box Bioretention

Grand River
Lansing Lugnuts
Sparrow Hospital
Michigan Avenue
Bioretention Area
Larch Street
Pennsylvania Avenue

YOU ARE HERE
Design

- Ultra-Urban
- 5-ft wide planter box style bioretention
 - 30 bioretention gardens
 - 7,631 square feet
 - 4.1 acre tributary area
- 4 blocks, both sides
- ADA compliant
- Adaptable to community needs
Final Product

- Cost $122/sf ($30/sf without urban constraints)
- Storage Volume 1.5 cf/sf
- Cost $81/cf of storage
- 90% Storm Design (+/-)
- 75% decrease in average annual runoff volume

This planter box bioretention treats the 25-year storm event (4.1-inches)
Challenges and Lessons Learned

• Trash/debris
 – Collection
 – Cigarette butts
 – Dog poop
 – Wind blown trash

• Education
 – Local businesses
 – Maintenance

• Design-Construction
 – Plant now, don’t wait
 – Geotextile
 – Detailed grading plans
 – Cars hitting the fence

• Monitoring
 – Low flows
 – Simulated rainfall event
Cedar Street School
(aka Old Town Medical Arts Building)
Project: Repurposing vacant school building. Now medical office, gymnasium, and commercial lease space

Storm Water Components

• Rain water harvesting
 – 6,500 sft Roof Area
 – 1,200 gal Cistern
• Swirling concentrator
• Subsurface detention and infiltration

Captures and treats 90% average annual rainfall
Cedar Street School
Water Re-use/Potable-use
@ Demand of 79 GPD

WE Credit 3.1 & 3.2
Water Use Reduction
Provided:
1. Water Saving Plumbing Fixtures
2. Storm Runoff Water Re-Use

Estimated Annual Storm Runoff Re-Use
26,364 GPY

Estimated Annual Potable Water Use
2,471 GPY
Rain Water Harvesting
Cedar Street School

Cistern Fill Lines
Rain Water Harvesting
Cedar Street School

Lessons
• Non-standard plumbing permit request, plan for extra time
• Filter requires regular cleaning
• Rainwater harvesting provides
 – 91% of non-potable water demand
 – 4% of the annual rainfall on site
 – 20% of annual rainfall on roof
Rain Water Harvesting and Site Infiltration
Edgewood Village Community Center
Rain Water Harvesting and Site Infiltration
Edgewood Village Community Center

Project: New Community Center for Apartment Complex with Active Community Garden

Storm Water Components
• Rain water harvesting 3320 gallon tank (Garden Irrigation, seasonal use)
• Pervious grass pavement
• Subsurface infiltration bed, 1062 cft storage capacity
• No positive drainage until system is full

Captures and infiltrates 90% average annual rainfall
Rain Water Harvesting and Site Infiltration
Edgewood Village Community Center

Design

- Pervious grass pavement
- Subsurface infiltration bed, 1062 cft storage capacity
Rain Water Harvesting and Site Infiltration
Edgewood Village Community Center

Rain water harvesting
• $37/cft storage within infiltration and collection system
• $18/cft cistern storage and distribution

Project Challenges
• High ground water
• No standing water allowed
Permeable Pavers
Parking Lane
Barnes Ave

- Residential road
- Permeable paver strip in parking lane
- Residents excited
- Storage volume 4.7 cf / sf
Boulevard Median Infiltration
Barnes Ave

- Median depression in select areas
- Targeted tree removal and replacement
- 2-ft soil amendments / replacement
- Construction challenges
- Storage volume 2.0 cf/sf
Curb Extension Bioretention
Washington Square

Storm water components
• 2 acre runoff area @ 100% impervious
• 12 Rain Gardens with total 8300 cft storage.
 – Triple shredded bark mulch
 – 3' Engineered soil
 – Aggregate layer with underdrain
• Ultra urban setting

Captures and treats 90% annual rainfall
Curb Extension Bioretention
Washington Square
Installation Cost
• $32/cft storage

Lessons
• Pre-treatment not required in all locations
• Riprap spillway needs support
• Maintenance needs vary with age of garden
 - Year One, 20 hours/garden
 - Year Two, 6 hours/garden
Constructed Wetland
Waverly Road Regional Network Connector
Constructed Wetland
Waverly Road Regional Network Connector

Project: Non-motorized trail project currently under construction. Impervious surface reduction of 32%

Storm Water Components

• Three rain gardens
• One constructed wetland

Captures and treats 90% annual rainfall

Before Picture
Constructed Wetland
Waverly Road Regional Network Connector

Design
• 7” separation from normal ground water elevation
• Downward water draw
• Wetland Plant Selection
Bioretention
Supervisors House

Storm water components

•Disconnected impervious surfaces
•Permeable walking path
•Rain garden
 – 24” Engineered Soil Mix
 – Aggregate layer with underdrain
 – Orifice controlled outlet

Captures and treats 90% annual rainfall
Lessons

• A lot of subsurface water can flow through “dry creek bed”
• Aesthetics of Green Infrastructure is an asset to property